METHOD OF CALCULATING THE DIELECTRIC LOSS TANGENT OF BINARY
SYSTEMS
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and M. V. Dobrochasov

Using a model structure with interpenetrating components, we derive formulas for
the dielectric loss tangent.

It was noted in [1] that there are many different physical processes described by an equa-
tion of the type

A = AB, (1)

where A and B are vector quantities, and A is a transport coefficient or other physical prop-
erty of the material. Such well-known relations as the laws of Ohm, Hooke, and Fick can be
written in the form (1).

The dielectric constant € is also defined by an equation of the type (1) [2]:

relating the electric induction vector D to the electric field vector. The dielectric loss
tangent tan § can be expressed in terms of the dielectric constant € and the electric conduc-
tivity o by the equation [3]
o 1
gd= — = ——.
we  oRC (3)

Therefore the determination of o, €, and tan 8 can be reduced to the calculation of the
generalized conductivity coefficient A and thus the methods of the theory of generalized con-
ductivity can be used [1]. We consider the class of materials whose structure can be repre-
sented in the form of interpenetrating components. We consider only mechanical mixtures and
porous materials in which the skeleton and pores form a structure with interpenetrating com-
ponents. An elementary cell of such a structure is shown in Fig. la. The inputs to the cal-
culation are the electrical conductivity, the dielectric constants of the components, and
their volume concentration (porosity). 1In {1] analytical expressions for the conductivity
A =0 = 1/p and the dielectric constant A = £ were obtained:

2xv(l —x o e
_fﬁi____l], v=—2 2, (4)
v+ 1—x 0y £
Here x is the dimensionless parameter of the model x = A/L, which is related to the volume
concentration (porosity) m, of the second component by the equation [1]

2% — 222+ 1 =my, my-+my=1. (5)

We substitute in (3) the values of the coefficients £ and o from (4) and obtain the dielectric
loss tangent of the material. However data for both the electrical resistivity and dielectric
constant do not exist for all materials. This creates a difficulty in the calculation. Ex-
pression (3) can be rewritten in a different form:

A=A [x2~|—v(1—x)2+

! s 1
olgbR oL ptgd’ (6)
1 L 1 (7)
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Fig. 1. (a) Elementary cell of a structure with interpenetrating components:
1) tan &,; 2) tan §,; (b) combination of capacitors; (c) and resistances.

In analogy with [1], we consider the capacitance of the elementary cell shown in Fig.
la. We place it between the plates of a capacitor in a stationary electric field and find
the capacitance of the resulting compound capacitor. We divide the elementary cell into parts
using a system of infinitely thin plates which are impermeable to current. This operation
leads to the linearization of the potential in each part and its capacitance G becomes pro-
portional to its cross-sectional area S; and inversely proportional to the length L of the
cell in the direction of the field and to the product of the electrical resistivity and the
dielectric loss tangent p; tan 8; (equation (6)). The total capacitance of the composite
capacitor is (Fig. 1b)

C:Cl+ck+2i. (8)
C2+C3
On the other hand, the total capacitance of the elementary cell is, by definitiom,
c._L 1 (9)
ol ptgd

Equating (8) and (9) and substituting the expressions for the capacitances C; of the separate
i-th parts:

C, = A? 1 ’ ng(L_A) I ’
ol p,tg§; © P> tg o,
. (10)
C‘) ::—._A_—---—--—1 N CQ: (LHA)_ 1
o ptgd; ol p,tg8,
we obtain the following expression for the dielectric loss tangent:
1 p 2xvy (1 — x) p, g é
= By (- A oy =L 11
tgd P tgd; { 1l A+ vwr-+1—x J P, tg 8, (11)

We now represent an elementary cell as a combination of resistors (Fig. lc). The total re-
sistance of the elementary cell is equal to the sum of the resistances of the separate parts:

R™' = RT 4+ Ry + 2/(Re + Ry). (12)

The total resistance of the elementary cell is given by (7) assuming that the entire volume
is filled with an isotropic medium with an effective dielectric constant ¢ and an effective
dielectric loss tangent tan §. Equating (7) and (12) and using the resistances R; of the sepa-
rate i-th parts, we obtain the following expression for the dielectric loss tangent:

tgbe 2xvy (1 — %) tg d.¢
tga-_——__l_l_ xz,_l_'v l_xz,_*____z__._ , WV :—_2._2_.. 13
£ 2 ) Vox 1 —x ? tg 8.8y (13)
We have obtained the expressions (11) and (13) for the dielectric loss tangent of a binary
system with a structure having interpenetrating components. The inputs for (3), (11), and

(13) are the volume concentration m, and the quantities p,, p,, €;, €5, tan &,, and tan §,.
The above method was used to calculate the dielectric loss tangent of porous polymer materials
[5] and liquid binary solutions [6].

The results were compared to the experimental data [5, 6] and are shown in Tables 1 and
2. The relative error does not exceed 10% with a confidence of 0.95.
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TABLE 1. Comparison of the Calculated and Tabulated Values of
tan § for Several Polymers .

. Density, s .10—s | Rel, error,.
Material kg /ng care. Bexpt 17" T g
Polyurethane foam:
PUF-305A 45 4,4 5 10
150 7,2 8 —3
250 8,5 8 —6
PUF-3017 100 2,94 3 2
200 6,1 6 —2
PUF-314 55 2,52 2,5 —1
250 4,3 4,0 —8
Potytetrafiuorethylene 300 0,169 0,181 7
(4] :

TABLE 2. Comparison of the Calculated and Tabulated Values of
tan § for Binary Solutions

t,°C my tgéexpt, tgd cale. Ret. error,%
Chloroform—acetone
10 0,538 0,516 l 4,2
30 0,598 0,530 11,4
40 50 - 0,658 0,598 9,4
70 0,501 0,487 3
90 0,453 0,415 8,4
Chloroform—2-buthanone
10 0,994 0,956 4
30 0,76 0,76 0
40 50 . 0,633 0,632 0,2
70 0,496 0,526 —6
90 0,388 0,405 —4.,4
Chioroform-pyridine
30 0,425 0,462 —8,7
30 50 0,444 0,440 1
70 0,429 0,402 6,3
Acetone-hexane
15 0,186 0,183 2
20 30 0,353 0,310 12
’ 50 0,435 0,408 6,2
70 0,506 0,474 6,3
Chlorobenzene—xylene
5 9,7-10-3 8,8.10-3 9
20 25 19,4.10-3 17,1.10-3 12,4
50 32,9.10-3 27,3-10-3 17
NOTATION

A, transport coefficient; £, dielectric constant; tan 8, losstangent; o, electric conduc-

tivity; p, resistivity of the material; w, frequency; R, resistance; C, capacitance; S, cross-
sectional area; L, length of the elementary cell; A, geometrical parameter of the elementary
cell; m,, m,, volume concentrations of the first and second components.
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